First-Order Logic Part Two

Recap from Last Time

What is First-Order Logic?

- *First-order logic* is a logical system for reasoning about properties of objects.
- Augments the logical connectives from propositional logic with
 - *predicates* that describe properties of objects,
 - functions that map objects to one another, and
 - *quantifiers* that allow us to reason about many objects at once.

Some bear is curious.

 $\exists b$. (Bear(b) \land Curious(b))

I is the existential quantifier and says "there is a choice of b where the following is true.

"For any natural number n, n is even if and only if n^2 is even"

 $\forall n$. $(n \in \mathbb{N} \to (Even(n) \leftrightarrow Even(n^2)))$

 \forall is the universal quantifier and says "for any choice of n, the following is true."

"Some P is a Q"

translates as

 $\exists x. (P(x) \land Q(x))$

Useful Intuition:

Existentially-quantified statements are false unless there's a positive example.

$$\exists x. (P(x) \land Q(x))$$

If x is an example, it must have property P on top of property Q.

"All P's are Q's"

translates as

$$\forall x. (P(x) \rightarrow Q(x))$$

Useful Intuition:

Universally-quantified statements are true unless there's a counterexample.

$$\forall x. \ (P(x) \rightarrow Q(x))$$

If x is a counterexample, it must have property P but not have property Q.

New Stuff!

The Aristotelian Forms

"All As are Bs"

"Some As are Bs"

$$\forall x. \ (A(x) \rightarrow B(x))$$

 $\exists x. (A(x) \land B(x))$

"No As are Bs"

"Some As aren't Bs"

$$\forall x. (A(x) \rightarrow \neg B(x))$$

 $\exists x. (A(x) \land \neg B(x))$

It is worth committing these patterns to memory. We'll be using them throughout the day and they form the backbone of many first-order logic translations.

The Art of Translation

Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means "every person loves someone else."

Answer at

https://cs103.stanford.edu/pollev

Every person loves someone else

Every person loves some other person

Every person p loves some other person

Every person p loves some other person

"All As are Bs"

 $\forall x. (A(x) \rightarrow B(x))$

```
\forall p. (Person(p) \rightarrow p loves some other person
```

"All As are Bs"

 $\forall x. (A(x) \rightarrow B(x))$

```
\forall p. (Person(p) \rightarrow p loves some other person
```

```
\forall p. (Person(p) \rightarrow there is some other person that p loves
```

```
\forall p. (Person(p) \rightarrow there is a person other than p that p loves
```

```
\forall p. (Person(p) \rightarrow there is a person q, other than p, where p loves q
```

```
∀p. (Person(p) →
  there is a person q, other than p, where
  p loves q
```

```
∀p. (Person(p) →
there is a person q, other than p, where
p loves q
```

"Some As are Bs"

 $\exists x. (A(x) \land B(x))$

"Some As are Bs"

 $\exists x. (A(x) \land B(x))$

```
\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land p loves q)
```

```
\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

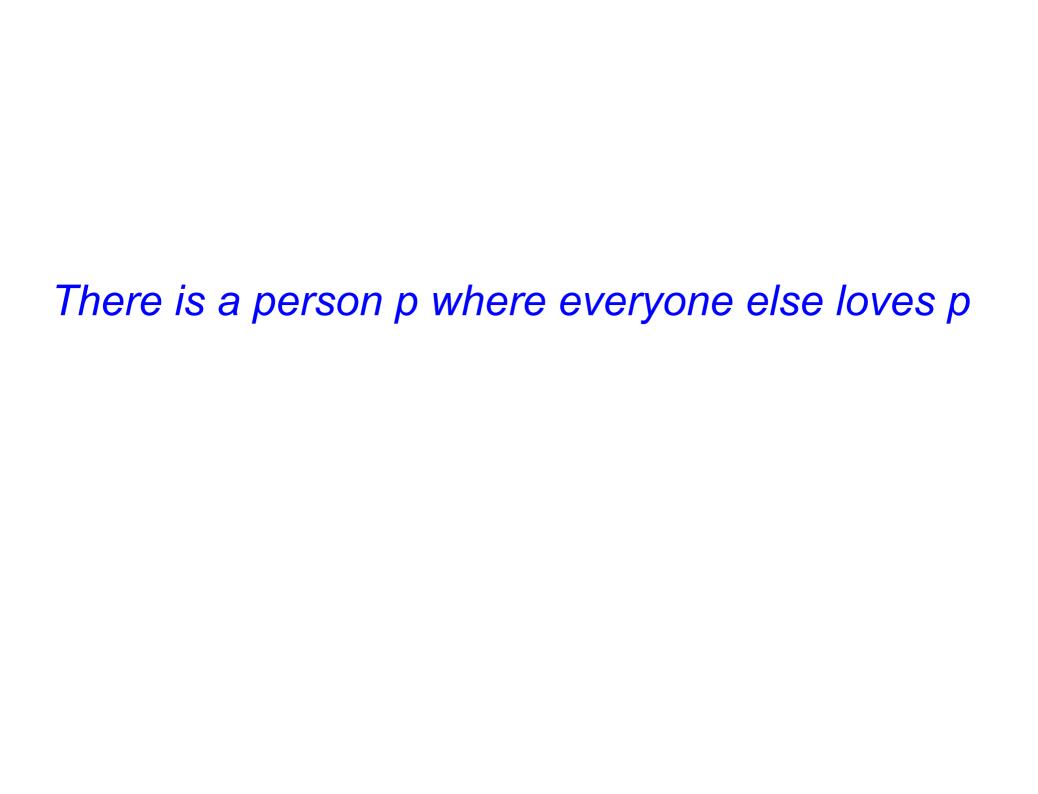
Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means "there is a person that everyone else loves."

Answer at

https://cs103.stanford.edu/pollev



There is a person p where everyone else loves p

"Some As are Bs"

 $\exists x. (A(x) \land B(x))$

 $\exists p. (Person(p) \land everyone else loves p)$

)

"Some As are Bs"

 $\exists x. (A(x) \land B(x))$

```
\exists p. (Person(p) \land everyone else loves p)
```

```
\exists p. (Person(p) \land every other person q loves p)
```

```
\exists p. (Person(p) \land every person q, other than p, loves p)
```

 $\exists p. (Person(p) \land every person q, other than p, loves p)$

)

"All As are Bs"

 $\forall x. \ (A(x) \to B(x))$

```
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow q loves p)
```

"All As are Bs"

 $\forall x. (A(x) \rightarrow B(x))$

```
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow q loves p)
)
```

```
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p))
```

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Every person loves someone else"

```
For every person... \forall p.~(Person(p) \rightarrow ... there is another person ... \exists q.~(Person(q) \land p \neq q \land ... they love Loves(p,q)
```

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

```
There is a person... \exists p. \ (Person(p) \land \\ \forall q. \ (Person(q) \land p \neq q \rightarrow \\ \\ \text{... loves.}  Loves(q, p)
```

For Comparison

```
For every person... \forall p. (Person(p) \rightarrow
... there is another person ... \exists q. (Person(q) \land p \neq q \land p)
                                      Loves(p, q)
        ... they love
                              \exists p. (Person(p) \land
   There is a person...
                                  \forall q. (Person(q) \land p \neq q \rightarrow
... that everyone else ...
                                      Loves(q, p)
        ... loves.
```

Consider these two first-order formulas:

```
\forall m. \exists n. m < n.
\exists n. \forall m. m < n.
```

- Pretend for the moment that our world consists purely of natural numbers, so the variables m and n refer specifically to natural numbers.
- One of these statements is true. The other is false.
- Which is which?
- Why?

Answer at

https://cs103.stanford.edu/pollev

Consider these two first-order formulas:

 $\forall m. \exists n. m < n.$

 $\exists n. \ \forall m. \ m < n.$

This says

for every natural number m, there's a larger natural number n.

- This is true: given any $m \in \mathbb{N}$, we can choose n to be m + 1.
- Notice that we can pick *n* based on *m*, and we don't have to pick the same *n* each time.

Consider these two first-order formulas:

 $\forall m. \exists n. m < n.$

 $\exists n. \ \forall m. \ m < n.$

This says

there is a natural number n that's larger than every natural number m

- This is false: no natural number is bigger than every natural number.
- Because $\exists n$ comes first, we have to make a single choice of n that works regardless of what we choose for m.

The statement

$$\forall x. \exists y. P(x, y)$$

means "for any choice of x, there's some choice of y where P(x, y) is true."

• The choice of *y* can be different every time and can depend on *x*.

The statement

$$\exists x. \ \forall y. \ P(x, y)$$

means "there is some x where for any choice of y, we get that P(x, y) is true."

• Since the inner part has to work for any choice of *y*, this places a lot of constraints on what *x* can be.

Order matters when mixing existential and universal quantifiers!

Time-Out for Announcements!

Problem Set Two

- Problem Set One was due today at 1:00PM.
 - You can extend the deadline to 1:00PM Saturday using one of your late days. As usual, no late submissions will be accepted beyond 1:00PM Saturday without prior approval.
- Problem Set Two goes out today. It's due next Friday at 1:00PM.
 - Explore first-order logic!
 - Expand your proofwriting toolkit!
- We have some online readings for this problem set.
 - Check out the *Guide to Logic Translations* for more on how to convert from English to FOL.
 - Check out the *Guide to Negations* for information about how to negate formulas.
 - Check out the *First-Order Translation Checklist* for details on how to check your work.

A Music Recommendation

Back to CS103!

Mechanics: Negating Statements

\ /		<i>(</i> \
$\forall x$.	P	$ \mathbf{X} $
V / L •		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects <i>x</i> , <i>P</i> (<i>x</i>) is true.	There is an x where $P(x)$ is false.
There is an x where $P(x)$ is true.	For all objects x , $P(x)$ is false.
For all objects x , $P(x)$ is false.	There is an x where $P(x)$ is true.
There is an x where $P(x)$ is false.	For all objects x , $P(x)$ is true.

$\forall x$.		(\cdot, \cdot)
∇X	P	X
V / L •		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects x , $P(x)$ is true.	There is an x where $P(x)$ is false.
There is an x where $P(x)$ is true.	For all objects <i>x</i> , $P(x)$ is false.
For all objects x , $P(x)$ is false.	There is an x where $P(x)$ is true.
There is an x where $P(x)$ is false.	For all objects <i>x</i> , <i>P</i> (<i>x</i>) is true.

$\mathbf{V}_{\mathbf{V}}$	D	
$\forall x$.		XI

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
There is an x where $P(x)$ is true.	For all objects <i>x</i> , $P(x)$ is false.
For all objects x , $P(x)$ is false.	There is an x where $P(x)$ is true.
There is an x where $P(x)$ is false.	For all objects <i>x</i> , <i>P</i> (<i>x</i>) is true.

$\forall x$.	
VX	X

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
There is an x where $P(x)$ is true.	For all objects <i>x</i> , $P(x)$ is false.
For all objects x , $P(x)$ is false.	There is an x where $P(x)$ is true.
There is an x where $P(x)$ is false.	For all objects <i>x</i> , <i>P</i> (<i>x</i>) is true.

$\forall x$.	-T	
∇X	P	X
V / L •		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
There is an x where $P(x)$ is true.	For all objects x , $P(x)$ is false.
For all objects x , $P(x)$ is false.	There is an x where $P(x)$ is true.
There is an x where $P(x)$ is false.	For all objects <i>x</i> , <i>P</i> (<i>x</i>) is true.

$\forall x$.	-T	
∇X	P	X
V / L •		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
There is an x where $P(x)$ is true.	$\forall x. \neg P(x)$
For all objects x , $P(x)$ is false.	There is an x where $P(x)$ is true.
There is an x where $P(x)$ is false.	For all objects <i>x</i> , <i>P</i> (<i>x</i>) is true.

1		7				
7	D(F		X	/	A
	_ ($oldsymbol{L}$	•	X.		V

 $\exists x. P(x)$

 $\forall x. \neg P(x)$

 $\exists x. \neg P(x)$

When is this true? When is this false'
--

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
There is an x where $P(x)$ is true.	$\forall x. \neg P(x)$
For all objects x , $P(x)$ is false.	There is an x where $P(x)$ is true.
There is an x where $P(x)$ is false.	For all objects <i>x</i> , <i>P</i> (<i>x</i>) is true.

\		(x)
$\forall x$.	\boldsymbol{P}	
V /		

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
There is an x where $P(x)$ is true.	$\forall x. \neg P(x)$
For all objects x , $P(x)$ is false.	There is an x where $P(x)$ is true.
There is an x where $P(x)$ is false.	For all objects x , $P(x)$ is true.

$\forall x$	D	(\mathbf{x})
$\mathbf{V} \mathbf{X}$		X

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$	
There is an x where $P(x)$ is true.	$\forall x. \neg P(x)$	
For all objects x , $P(x)$ is false.	$\exists x. P(x)$	
There is an x where $P(x)$ is false.	For all objects x , $P(x)$ is true.	

1		7				
7	D(F		X	/	A
	_ ($oldsymbol{L}$	•	X.		V

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

For all objects <i>x</i> , <i>P</i> (<i>x</i>) is true.	$\exists x. \neg P(x)$	
There is an x where $P(x)$ is true.	$\forall x. \neg P(x)$	
For all objects <i>x</i> , <i>P</i> (<i>x</i>) is false.	$\exists x. P(x)$	
There is an x where $P(x)$ is false.	For all objects <i>x</i> , $P(x)$ is true.	

When is this true? When is this false?

\ /	
$H_{\mathcal{N}}$	
$\forall x$.	
	(^ - /

$$\exists x. P(x)$$

$$\forall x. \neg P(x)$$

$$\exists x. \neg P(x)$$

	For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
	There is an x where $P(x)$ is true.	$\forall x. \neg P(x)$
	For all objects <i>x</i> , <i>P</i> (<i>x</i>) is false.	$\exists x. P(x)$
)	There is an x where $P(x)$ is false.	For all objects x , $P(x)$ is true.

When is this true? When is this false?

\boldsymbol{P}	V
L	\wedge)
	P(

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
There is an x where $P(x)$ is true.	$\forall x. \neg P(x)$
For all objects <i>x</i> , $P(x)$ is false.	$\exists x. P(x)$
There is an x where $P(x)$ is false.	$\forall x. P(x)$

$\forall x$.	D	(x)
VX.		X

 $\exists x. P(x)$

 $\forall x. \neg P(x)$

 $\exists x. \neg P(x)$

For all objects x , $P(x)$ is true.	$\exists x. \neg P(x)$
There is an x where $P(x)$ is true.	$\forall x. \ \neg P(x)$
For all objects x , $P(x)$ is false.	$\exists x. P(x)$
There is an x where $P(x)$ is false.	$\forall x. P(x)$

Negating First-Order Statements

Use the equivalences

```
\neg \forall x. A is equivalent to \exists x. \neg A
\neg \exists x. A is equivalent to \forall x. \neg A
```

to negate quantifiers.

- Mechanically:
 - Push the negation across the quantifier.
 - Change the quantifier from \forall to \exists or vice-versa.
- Use techniques from propositional logic to negate connectives.

Taking a Negation

```
\forall x. \exists y. Loves(x, y) ("Everyone loves someone.")
```

```
\neg \forall x. \exists y. Loves(x, y)
\exists x. \neg \exists y. Loves(x, y)
\exists x. \forall y. \neg Loves(x, y)
```

("There's someone who doesn't love anyone.")

Two Useful Equivalences

• The following equivalences are useful when negating statements in first-order logic:

```
\neg(p \land q) is equivalent to p \rightarrow \neg q
\neg(p \rightarrow q) is equivalent to p \land \neg q
```

- These identities are useful when negating statements involving quantifiers.
 - A is used in existentially-quantified statements.
 - \rightarrow is used in universally-quantified statements.
- When pushing negations across quantifiers, we strongly recommend using the above equivalences to keep \rightarrow with \forall and \land with \exists .

Negating Quantifiers

• What is the negation of the following statement, which says "there is a cute puppy"?

 $\exists x. (Puppy(x) \land Cute(x))$

Answer at

https://cs103.stanford.edu/pollev

Negating Quantifiers

• What is the negation of the following statement, which says "there is a cute puppy"?

$$\exists x. (Puppy(x) \land Cute(x))$$

We can obtain it as follows:

```
\neg \exists x. (Puppy(x) \land Cute(x))
\forall x. \neg (Puppy(x) \land Cute(x))
\forall x. (Puppy(x) \rightarrow \neg Cute(x))
```

- This says "no puppy is cute."
- Do you see why this is the negation of the original statement from both an intuitive and formal perspective?

 $\exists S. (Set(S) \land \forall x. x \notin S)$ ("There is a set with no elements.")

$$\neg \exists S. (Set(S) \land \forall x. x \notin S)$$

 $\forall S. \neg (Set(S) \land \forall x. \neg x \notin S)$
 $\forall S. (Set(S) \rightarrow \neg \forall x. x \notin S)$
 $\forall S. (Set(S) \rightarrow \exists x. \neg (x \notin S))$
 $\forall S. (Set(S) \rightarrow \exists x. x \in S)$

("Every set contains at least one element.")

Restricted Quantifiers

Quantifying Over Sets

The notation

$$\forall x \in S. P(x)$$

means "for any element x of set S, P(x) holds." (It's vacuously true if S is empty.)

The notation

$$\exists x \in S. P(x)$$

means "there is an element x of set S where P(x) holds." (It's false if S is empty.)

Quantifying Over Sets

The syntax

$$\forall x \in S. P(x)$$
$$\exists x \in S. P(x)$$

is allowed for quantifying over sets.

- In CS103, feel free to use these restricted quantifiers, but please do not use variants of this syntax.
- For example, don't do things like this:

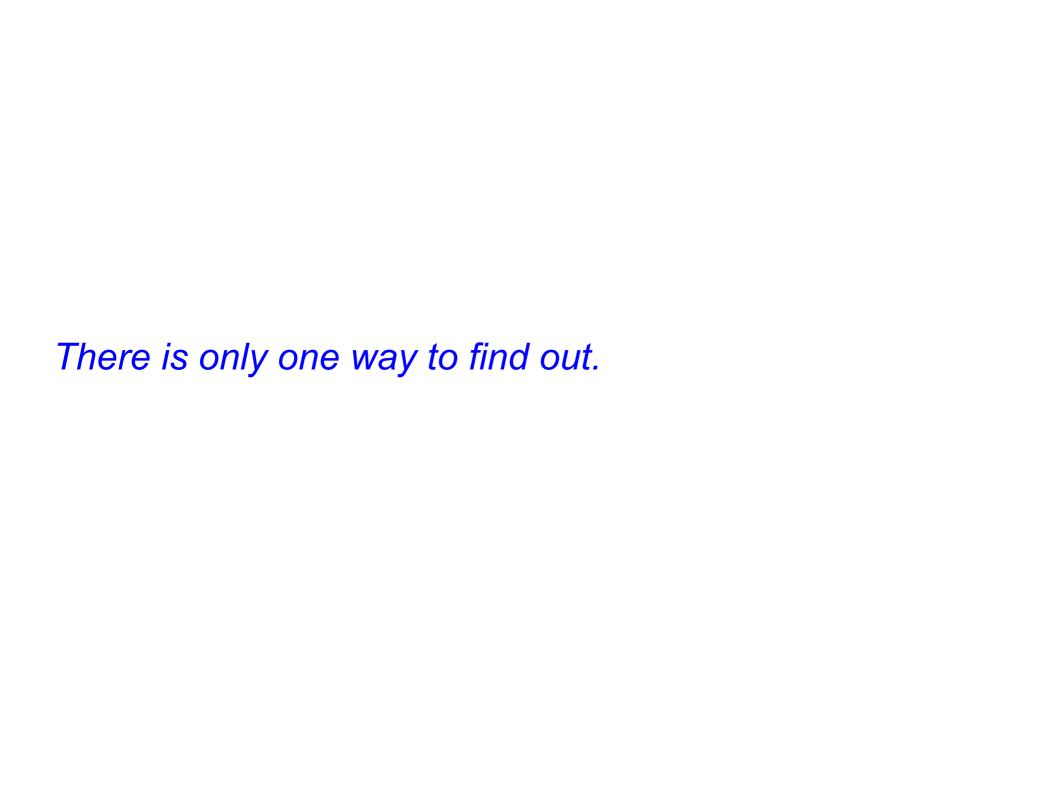
$$\forall x \text{ with } P(x). \ Q(x)$$
 $\forall y \text{ such that } P(y) \land Q(y). \ R(y).$
 $\exists P(x). \ Q(x)$

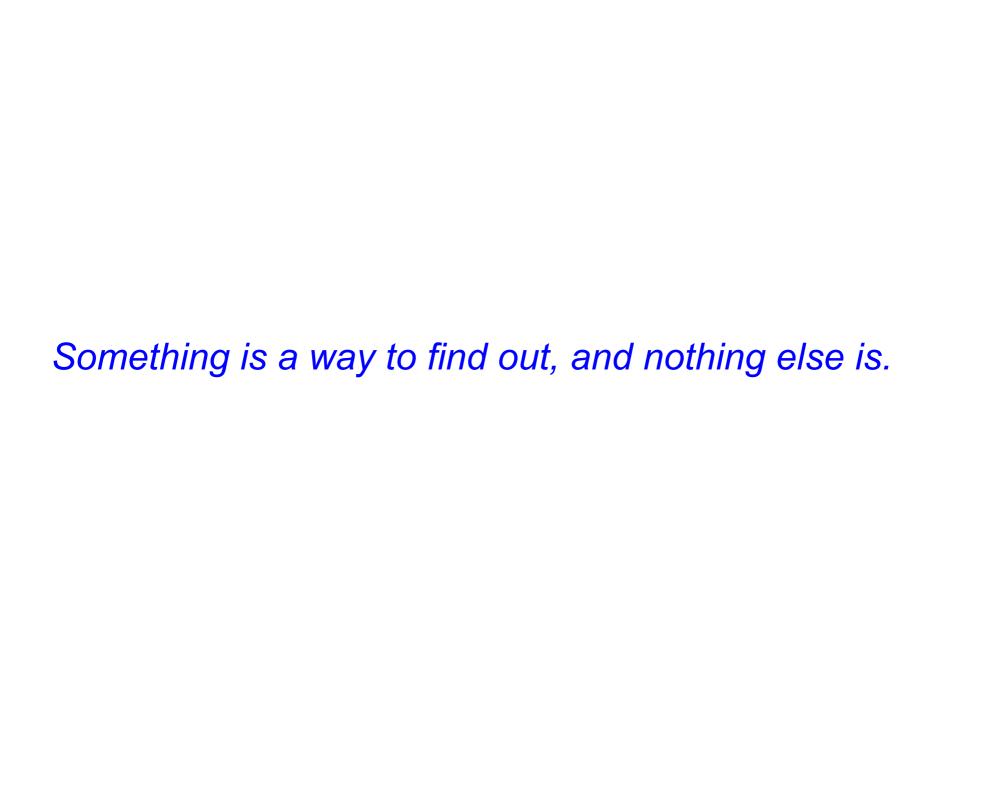
Expressing Uniqueness

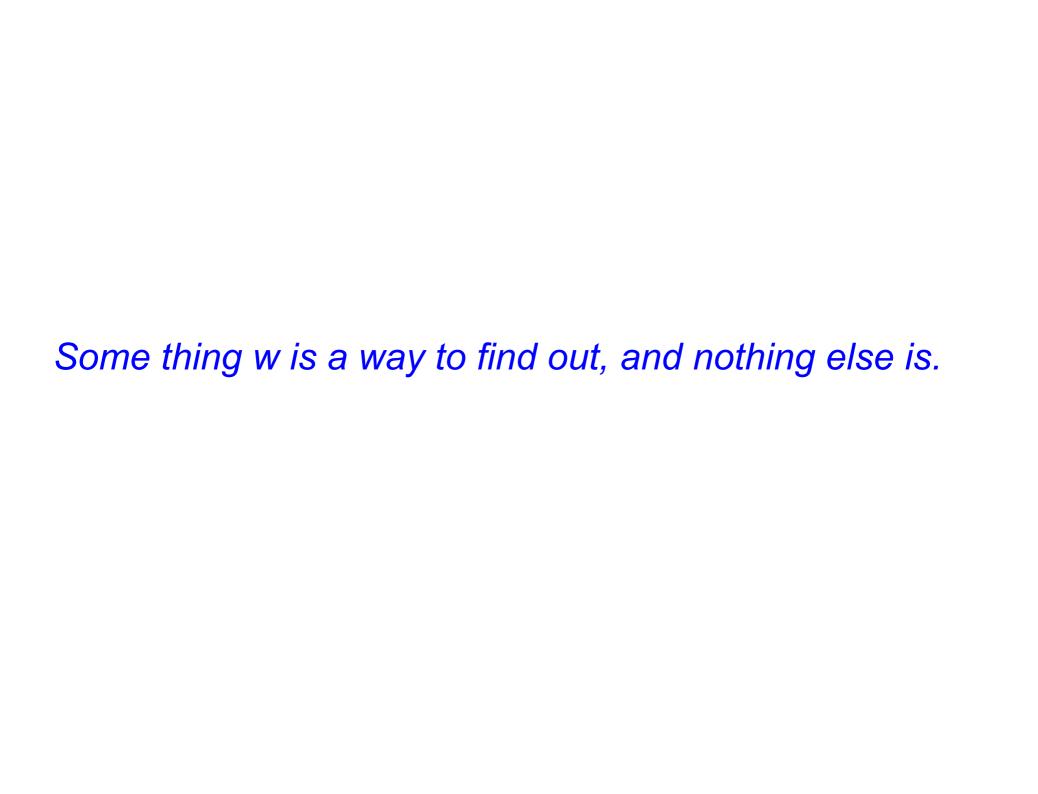
Using the predicate

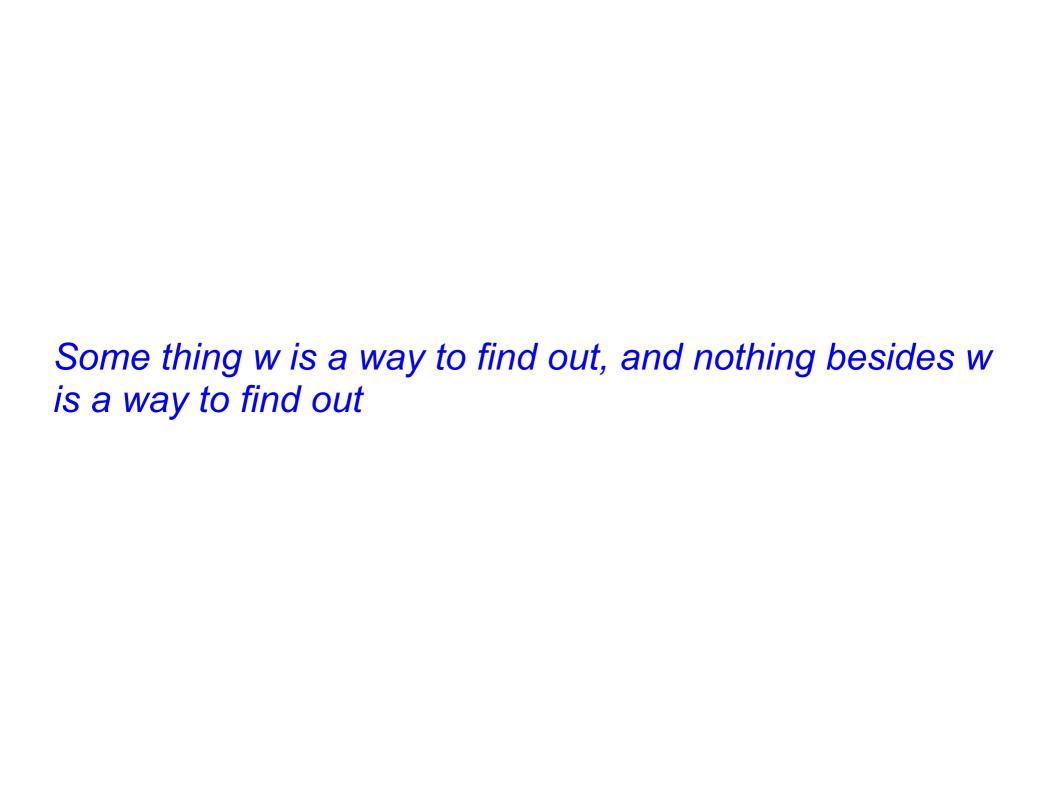
- WayToFindOut(w), which states that w is a way to find out,

write a sentence in first-order logic that means "there is only one way to find out."









```
∃w. (WayToFindOut(w) ∧ nothing besides w is way to find out )
```

```
∃w. (WayToFindOut(w) ∧ anything that isn't w isn't a way to find out )
```

```
∃w. (WayToFindOut(w) ∧ any thing x that isn't w isn't a way to find out )
```

```
\exists w. (WayToFindOut(w) \land \forall x. (x \neq w \rightarrow x isn't a way to find out)
```

```
\exists w. (WayToFindOut(w) \land \forall x. (x \neq w \rightarrow \neg WayToFindOut(x))
```

```
\exists w. (WayToFindOut(w) \land \forall x. (x \neq w \rightarrow \neg WayToFindOut(x))
```

```
\exists w. (WayToFindOut(w) \land \forall x. (WayToFindOut(x) \rightarrow x = w)
```

```
\exists w. (WayToFindOut(w) \land \forall x. (WayToFindOut(x) \rightarrow x = w)
```

Expressing Uniqueness

- To express the idea that there is exactly one object with some property, we write that
 - there exists at least one object with that property, and that
 - there are no other objects with that property.
- You sometimes see a special "uniqueness quantifier" used to express this:

$\exists !x. P(x)$

• For the purposes of CS103, please do not use this quantifier. We want to give you more practice using the regular ∀ and ∃ quantifiers.

Next Time

Functions

 How do we model transformations and pairings?

• First-Order Definitions

 Where does first-order logic come into all of this?

Proofs with Definitions

How does first-order logic interact with proofs?